
International Journal of Pharmaceutics 286 (2004) 125–129

Note

Predicting polymorphic transformation curves
using a logistic equation
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Abstract

The commonly used solid-state reaction models (for example—Prout–Tompkins, Avrami–Erofe’ev) describe the polymorphic
transformation data only over a certain range,α from 10% to 90%. Predictions based on a fit to a fraction of the data are inadequate
because we ignore the early induction phase of the reaction, which is important for predictive purposes. A four-parameter logistic
equation describes the data over the entire curve for polymorphic transformation at high temperatures. We use the parameters
of the logistic equation to predict the transformation curves. The predicted curves agree with the experimental data.
© 2004 Elsevier B.V. All rights reserved.
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We begin analyzing data from a solid-state reaction
tudy by plotting the % transformed,α, versus time,t
Fig. 1). The curves ofα versust are usually S-shaped
Byrn et al., 1999). The commonly used solid-state
eaction models (for example—Prout–Tompkins,
vrami–Erofe’ev) describe the polymorphic transfor-
ation data only over a certain range,α from 10%

o 90% (Zhou et al., 2003). Predictions based on a fit
o a fraction of the data are inadequate because we
gnore the early induction phase of the reaction, which
s important for predictive purposes. The motivation
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in applying the logistic equation to polymorph
transformation is to describe, and predict the data
the entire curve.

The logistic equation assumes that transforma
occurs exponentially until an upper limit of the po
morph is reached, at which point the transforma
slows and eventually saturates, producing the ch
teristic S-shape curve (Stone, 1980). A logistic equa
tion describes the data but does not commit to a spe
mechanism. The logistic equation is useful in m
eling population ecology (Verhulst, 1845; Pearl an
Reed, 1920; Leach, 1981; Kingsland, 1995), chem-
ical reactions (Reed and Berkson, 1929), bioassay
(Berkson, 1944), radioimmunoassays (Healy, 1972),
and dose–response curves (De Lean et al., 1978
Foreman and Johansen, 2003).
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Fig. 1. Comparing the exponential and logistic curve.

In the simple exponential model, the transformation
rate dm/dt is proportional to the product

dm

dt
= km (1)

m is the amount untransformed, andk is the rate of
transformation

In the logistic equation (Reed and Berkson, 1929)
the transformation rate dm/dt is proportional to the un-
transformed and the transformed product.

dm

dt
= km

[
1 − m

b

]
(2)

b is the upper limit or upper asymptote, and (1−m/b)
is the fraction of transformed product.

Solving the differential Eq.(2) by separating the
variables and integrating gives:

m = b

1 + e−kt−c
(3)

c is the location parameter that shifts the curve hori-
zontally, andt is the time.

An extension of Eq.(3)is the four-parameter logistic
equation (Healy, 1972; De Lean et al., 1978) that in-
creases the flexibility for fitting the data over the entire
curve by adding parameters. This is expressed as

α = � + u

1 + (t/tm)d
(4)

α

u
w
α s
t

Table 1
Parameter estimates for the four-parameter logistic function for
180–220◦C data

T (◦C) � u tm d
180 0.5 98 10.5 −2.2
190 0.0 98 4.10 −2.1
200 1.8 98 1.79 −2.0
210 2.6 98 0.85 −1.9
220 6.0 98 0.57 −1.9

�: Lower asymptote value for % transformed; u: upper asymptote
value for % transformed;tm: time in hours for 50% transformation,
estimated from the logistic equation;d: slope factor that decides the
steepness of the curve; mean± 95%PI for ‘d’ is 2.0 ± 0.3.

We use the four-parameter logistic Eq.(4) to de-
scribe the polymorphic transformation curves at high
temperatures. We assume a simple solid-state trans-
formation where the less stable polymorph is trans-
formed to a more stable polymorph at a certain tem-
perature; the newly formed crystals acts catalytically
for the same transformation producing more of the sta-
ble polymorph.

We studied the kinetics of transformations using
crystals of a compound in development. The more sta-
ble crystalline form (Form I) is monotropically related
to a less stable crystalline form (Form II), which crys-
tallizes from a suitable solvent system and is kinetically
stable under ambient conditions. At high heating rates
(e.g., 100◦C/min), a Form II melt is seen at 266◦C
with recrystallization of Form I from the melt. At lower
heating rates, the exothermic solid-state conversion is
completed before the Form II melt occurs. Form I melts
at 282◦C.

We used variable temperature X-ray powder diffrac-
tion (VT-XRPD) to follow the kinetics of transfor-
mation under isothermal conditions. The studies were
completed using a Scintag XDS 2000 diffractometer
(Thermo Electron Corp., Inc. Cupertino, CA.) with a
Cu K� (λ = 1.540562Å) source equipped with a Scin-
tag high and low temperature attachment. Quantitative
analysis was done using the area of the peak at 9.2◦ 2Θ

in the pattern of Form 1.
Table 1displays the values of�, u, tm, andd for

the four-parameter logistic fit to the 180–220◦C data.
F 1
o ur-
p The
u rom
t he
: % transformed;� : lower asymptote value forα; u:
pper asymptote value forα; t: time, hours;tm: time at
hich α is 50% (seeJacobs (1997)for not using 50%
as the inflection point);d: slope factor that decide

he steepness of the curve.
ig. 2 is a trellis display (Menon and Nerella, 200)
f the experimental data, the curve fit using the fo
arameter logistic equation, and the residuals.
pper asymptote is constrained at 98% (read f

he 200◦C to 220◦C data) for all temperatures. T
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Fig. 2. Polymorphic transformation data, logistic curve fit, and residuals for 180–220◦C.

residuals show systematic deviations but lie within
±3%. We did not try other model estimations and re-
finement.

Sinceymax/ymin for tm is >3 Box et al. (1978)rec-
ommend a variance stabilizing transformation of the
response. A log transformation makes thetm data sym-
metric.Table 2showstm varies inversely asT. We use
the relation lntm versus 1/

√
T (Table 2) to extrapolate

‘ tm’ to 160◦C and 170◦C. Using 1/
√

T gives us the
lowest predicted sum of square residuals. For predict-
ing the transformation curves at 160◦C and 170◦C, ‘�’
is set at 1.5% (lower asymptote ory-intercept that can
vary between 0 and 2%), ‘u’ at 98% (upper asymp-
tote read from the 200◦C to 220◦C data), and ‘d’ at 2
(mean of 180–220◦C,Table 1). For 160◦C and 170◦C
we collected the polymorphic transformation data for
40 h. The % transformed for 160◦C and 170◦C in 40 h
was 30% and 70%, respectively.Fig. 3shows the resid-
uals for 160◦C were within 2%, and the residuals for
170◦C increase to 8% with predicted % transformed.
There is scatter in the % transformed at 170◦C for

the later time points as the transition slows down and
settles towards an asymptote (Fig. 3). The scatter prob-
ably reflects variability in measuring the area of the
peak selected for quantitative analysis. The variabil-
ity in the area measurement may not influence the

Table 2
Predictingtm for 160◦C and 170◦C ln tm = 416× 1/

√
T − 28.74

T (◦C) tm t̂m tm − t̂m
Extrapolated

160 NM 63.3 –
170 21.9 23.7 −1.80

180 10.5 9.65 0.85
190 4.10 4.22 −0.12
200 1.79 1.97 −0.18
210 0.85 0.97 −0.12
220 0.57 0.50 0.07

T: Temperature in◦C; tm: time in hours for 50% transformation,
estimated from the logistic equation;t̂m: predicted time for 50%
transformation from the lntm = 1/

√
T ; tm − t̂m: residuals; NM: not

measured.
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Fig. 3. Observed and predicted polymorphic transformation curves
for 160◦C and 170◦C.

crystal growth phase. We did not confirm our the-
ory. The 12 h induction phase at 160◦C suggests that
polymorphic transformation will be slow under ambi-
ent conditions. After storing the compound for seven
years under ambient conditions the polymorphic trans-
formation is undetectable by the powder diffraction
technique.

A four-parameter logistic equation predicts the data
over the entire curve for polymorphic transforma-
tion at high temperatures. The predicted curves agree
with the experimental data. The usefulness and lim-
its of the four-parameter logistic equation to polymor-
phic transformation will be confirmed when repeated
for different data sets, and at different temperature
ranges.

Acknowledgement

AM thanks Dr. Nadhamuni Nerella for his help.

Fig. 4. Comparing the Logistic fit to the Prout–Tompkins fit for
180◦C.

Appendix

Deriving theProut and Tompkins (1944)from the
logistic function

m = b

1 + e−kt−c
(3)

assuming
m

b
= α

α = 1

1 + e−kt−c

1 − α = 1 − 1

1 + e−kt−c
= 1 + e−kt−c

1 + e−kt−c
= e−kt−c

1 + e−kt−c

α

1 − α
= 1/(1 + e−kt−c)

e−kt−c/(1 + e−kt−c)
= 1

e−kt−β
= e+kt+c

ln

(
α

1 − α

)
= kt + c . . .

× (same from as Prout–Tompkins)

Fig. 4 compares the logistic fit to the
Prout–Tompkins fit for entire experimental data
at 180◦C. The Prout–Tompkins does not describe the
experimental data compared to the four-parameter
logistic fit.
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Fig. 5. Effect of ‘tm’ and ‘d’ on the induction phase and shape of the S-curve.

Fig. 5 shows that ‘tm’ and ‘d’ affects the induction
phase and the shape of the S-curve. In the figure, ‘d’
decreases going from left to right (−6 to−12), and ‘tm’
increases going from bottom to top (6–8). Increasing
in tm andd prolongs the induction phase.
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